Химическое производство с его широким спектром агрессивных веществ как органического так и неорганического происхождения, участвующих в технологических процессах производств, предъявляет особые требования к выбору материала оборудования и производственных коммуникаций.
Здесь в первую очередь речь идет о коррозионных свойствах материала, из которых изготовлено производственное оборудование. Особенно это касается устройств, напрямую контактирующих с агрессивными веществами — кислотами, щелочами, солями и прочими.
- Нержавеющая сталь под воздействием агрессивных веществ и ее марка для химпрома
- Антикоррозийный сплав титана и тантала
Нержавеющая сталь под воздействием агрессивных веществ и ее марка для химпрома
В качестве примера можно привести реактор разложения в производстве двуокиси титана сернокислотным методом. Основное сырье под названием ильменитовая руда в реакторе под воздействием серной кислоты разлагается и следует далее в производственную нить. Мы не будем останавливаться подробно на дальнейших химических процессах производства двуокиси титана, а лишь остановимся на воздействие серной кислоты на всевозможные аппараты и коммуникации вследствии коррозии.
И ошибочно думать, что такой материал как нержавеющая сталь под воздействием серной кислоты или особенно хлора не подвержена коррозии. Оказывается, нержавеющая сталь далеко не едина в своем составе, и в зависимости от назначения, существует в виде различных марок.
На сегодняшний момент не существует нержавеющего металла, который бы обеспечил 100% защиту от кислот. Проще говоря, разрушение структуры нержавеющего металла под воздействием кислот, — это вопрос времени.
И задача науки здесь состоит в том, чтобы продлить это самое время защиты.
Антикоррозийный сплав титана и тантала
Есть ли на сегодняшний день более эффективная альтернатива нержавеющей стали? Оказывается, уже долгое время пытаются «скрестить» в единый сплав, в несколько раз превышающий коррозионную стойкость, такие химические элементы как титан и тантал.
Тантал выбран не случайно, поскольку он является наряду с платиной самым стойким к коррозии в ряде с цирконием, ниобием и молибденом. Вся проблема получения сплава до сих пор состояла в огромной вилке температуры плавления титана и тантала.
Ниже приведем физико-химические свойства элементов титана и тантала.
Как видим, их температуры плавления тантала примерно в полтора раза чем у титана. В процессе плавки этих элементов тантал еще будучи твердым оседает в расплавленном жидком титане.
Наконец-то, решение было найдено учеными Института ядерной физики им. Г. И. Будкера при помощи ускорителя электронов ЭЛВ-6. В качестве основного материала конструкции будущего реактора служит титан исходя из его сырьевой достаточности для производственных нужд в рамках России.
Далее на него с помощью высокоэнергетического электронного пучка ЭВЛ-6 равномерно удалось наложить порошкообразный титан и тантал. В уже расплавленном жидком титане электронный пучок с энергией в 1,4 МэВ позволил расплавить тантал равномерно по всему накладываемому объему слоя.
Проще говоря эффект расплавления тантала в титане можно сравнить с растворенной поваренной солью в стакане с водой. На выходе получен материал, который превышает срок коррозионной стойкости нержавеющей стали в 10 раз при его увеличении в цене лишь в 3 раза. Экономическая выгода здесь на лицо. Осталось лишь дело за малым — поставить производство нового сплава на поток для эксплуатации в химическом производстве.
странно, почему не использовали свойства «индия» , не большой специалист, но знаю, что он увеличивает температуру кипения намного. добавить в титан 1-2% индия и процесс получился бы еще дешевле, к тому же, тантала мне кажется, хватило бы %10-12 , чтобы титан стал практически нейтральным. существуют сплавы титана с палладием, очень высокая коррозионная стойкость при добавлении всего 1% палладия
Возможно здесь весь ответ в доступности сырья, то есть так называемого тантала, который более доступен в сравнении с палладием. На счет повышения планки кипения за счет добавления «индия» интересный момент!
разница в цене 1% палладия и 15% тантала, будет в пользу палладия. индий 114,82 Температура плавления (в °C): 156,6 Температура кипения (в °C): 2109 и он именно при производстве сплавов разных металлов идеален . еще германий — Температура плавления 938, 25 °C, кипения 2850, при правильном подходе в минимальных % долях добавок другой лигатуры, можно получать идеальные сплавы с разными заданными характеристиками, например 6-8% алюминия, добавленные в титан, увеличивают его прочность в 2.5 раза. не снижая его коррозионной стойкости. и индий, германий, алюминий, тантал, палладий и титан могут дать совершенно новую группу сплавов, для разных целей,